Effects of Clipping an Invasive Plant Species on the Growth of Planted Plants of Two Co-Occurring Species in a Greenhouse Study

Author:

Ye Xiaoqi1,Meng Jinliu1,Ma Ruixiang1,Wu Ming1

Affiliation:

1. Research Station of Hangzhou Bay Wetland Ecosystems, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China

Abstract

The restoration of native plants in invaded habitats is constrained with the presence of highly competitive exotic species. Aboveground removal, such as clipping or mowing, of invasive plants is required for successful restoration. The effects of clipping an invasive plant species, Solidago canadensis, grown at five densities (1–5 plants per pot), and planting two co-occurring and competitive species, Sesbania cannabina and Imperata cylindrica, on the growth of both the invasive species and the co-occurring species were investigated in a greenhouse experiment. The established S. canadensis suppressed the growth of planted seedlings with 47.8–94.4% reduction in biomass, with stronger effects at higher densities; clipping significantly reduced 97.5–97.4% of biomass of S. canadensis and ameliorated the suppression effects (with only 8.7–52.7% reduction in biomass of the co-occurring plants), irrespective of density. Both the aboveground and belowground part of S. canadensis contributed to its suppression effects on planted co-occurring species. Seed sowing of co-occurring species reduced the belowground growth, but not the underground growth of S. canadensis. S. cannabina appeared to be more effective at reducing the growth of S. canadensis than I. cylindrica. Therefore, clipping together with planting competitive species that can overcome the belowground priority effects of S. canadensis could be a promising strategy for controlling S. canadensis invasion and restoring native plant communities.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3