Application of Hierarchical Clustering to Analyze Solvent-Accessible Surface Area Patterns in Amycolatopsis lipases

Author:

Sraphet Supajit,Javadi Bagher

Abstract

The wealth of biological databases provides a valuable asset to understand evolution at a molecular level. This research presents the machine learning approach, an unsupervised agglomerative hierarchical clustering analysis of invariant solvent accessible surface areas and conserved structural features of Amycolatopsis eburnea lipases to exploit the enzyme stability and evolution. Amycolatopsis eburnea lipase sequences were retrieved from biological database. Six structural conserved regions and their residues were identified. Total Solvent Accessible Surface Area (SASA) and structural conserved-SASA with unsupervised agglomerative hierarchical algorithm were clustered lipases in three distinct groups (99/96%). The minimum SASA of nucleus residues was related to Lipase-4. It is clearly shown that the overall side chain of SASA was higher than the backbone in all enzymes. The SASA pattern of conserved regions clearly showed the evolutionary conservation areas that stabilized Amycolatopsis eburnea lipase structures. This research can bring new insight in protein design based on structurally conserved SASA in lipases with the help of a machine learning approach.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3