An Effective Ensemble Machine Learning Approach to Classify Breast Cancer Based on Feature Selection and Lesion Segmentation Using Preprocessed Mammograms

Author:

Rafid A. K. M. Rakibul HaqueORCID,Azam SamiORCID,Montaha Sidratul,Karim AsifORCID,Fahim Kayes UddinORCID,Hasan Md. ZahidORCID

Abstract

Background: Breast cancer, behind skin cancer, is the second most frequent malignancy among women, initiated by an unregulated cell division in breast tissues. Although early mammogram screening and treatment result in decreased mortality, differentiating cancer cells from surrounding tissues are often fallible, resulting in fallacious diagnosis. Method: The mammography dataset is used to categorize breast cancer into four classes with low computational complexity, introducing a feature extraction-based approach with machine learning (ML) algorithms. After artefact removal and the preprocessing of the mammograms, the dataset is augmented with seven augmentation techniques. The region of interest (ROI) is extracted by employing several algorithms including a dynamic thresholding method. Sixteen geometrical features are extracted from the ROI while eleven ML algorithms are investigated with these features. Three ensemble models are generated from these ML models employing the stacking method where the first ensemble model is built by stacking ML models with an accuracy of over 90% and the accuracy thresholds for generating the rest of the ensemble models are >95% and >96. Five feature selection methods with fourteen configurations are applied to notch up the performance. Results: The Random Forest Importance algorithm, with a threshold of 0.045, produces 10 features that acquired the highest performance with 98.05% test accuracy by stacking Random Forest and XGB classifier, having a higher than >96% accuracy. Furthermore, with K-fold cross-validation, consistent performance is observed across all K values ranging from 3–30. Moreover, the proposed strategy combining image processing, feature extraction and ML has a proven high accuracy in classifying breast cancer.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3