ARFGCN: Adaptive Receptive Field Graph Convolutional Network for Urban Crowd Flow Prediction

Author:

Dai Genan12,Huang Hu23ORCID,Peng Xiaojiang1ORCID,Zhang Bowen12,Fu Xianghua1ORCID

Affiliation:

1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

2. Guangdong Key Laboratory for Intelligent Computation of Public Service Supply, Shenzhen 518055, China

3. Shenzhen Graduate School, Peking University, Shenzhen 518055, China

Abstract

Urban crowd flow prediction is an important task for transportation systems and public safety. While graph convolutional networks (GCNs) have been widely adopted for this task, existing GCN-based methods still face challenges. Firstly, they employ fixed receptive fields, failing to account for urban region heterogeneity where different functional zones interact distinctly with their surroundings. Secondly, they lack mechanisms to adaptively adjust spatial receptive fields based on temporal dynamics, which limits prediction performance. To address these limitations, we propose an Adaptive Receptive Field Graph Convolutional Network (ARFGCN) for urban crowd flow prediction. ARFGCN allows each region to independently determine its receptive field size, adaptively adjusted and learned in an end-to-end manner during training, enhancing model prediction performance. It comprises a time-aware adaptive receptive field (TARF) gating mechanism, a stacked 3DGCN, and a prediction layer. The TARF aims to leverage gating in neural networks to adapt receptive fields based on temporal dynamics, enabling the predictive network to adapt to urban regional heterogeneity. The TARF can be easily integrated into the stacked 3DGCN, enhancing the prediction. Experimental results demonstrate ARFGCN’s effectiveness compared to other methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Top Talent of SZTU

Research Promotion Project of the Key Construction Discipline in Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3