On the Ratio-Type Family of Copulas

Author:

El Ktaibi Farid1ORCID,Bentoumi Rachid1,Mesfioui Mhamed2

Affiliation:

1. Department of Mathematics and Statistics, Zayed University, Abu Dhabi 144534, United Arab Emirates

2. Département de Mathématiques et d’Informatique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada

Abstract

Investigating dependence structures across various fields holds paramount importance. Consequently, the creation of new copula families plays a crucial role in developing more flexible stochastic models that address the limitations of traditional and sometimes impractical assumptions. The present article derives some reasonable conditions for validating a copula of the ratio-type form uv/(1−θf(u)g(v)). It includes numerous examples and discusses the admissible range of parameter θ, showcasing the diversity of copulas generated through this framework, such as Archimedean, non-Archimedean, positive dependent, and negative dependent copulas. The exploration extends to the upper bound of a general family of copulas, uv/(1−θϕ(u,v)), and important properties of the copula are discussed, including singularity, measures of association, tail dependence, and monotonicity. Furthermore, an extensive simulation study is presented, comparing the performance of three different estimators based on maximum likelihood, ρ-inversion, and the moment copula method.

Publisher

MDPI AG

Reference29 articles.

1. Úbeda-Flores, M. Some results on a transformation of copulas and quasi-copulas;Dolati;Inf. Sci.,2014

2. Drouet-Mari, D., and Kotz, S. (2001). Correlation and Dependence, Imperial College Press.

3. Solution to an open problem about a transformation on the space of copulas;Durante;Depend. Model.,2014

4. Distorted copulas: Constructions and tail dependence;Durante;Comm. Statist. Theory Methods,2010

5. On a new construction of 1-Lipschitz aggregation functions, quasi-copulas and copulas;Mesiar;J. Bank. Financ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3