A Dual-Competition-Based Particle Swarm Optimizer for Large-Scale Optimization

Author:

Gao Weijun1ORCID,Peng Xianjie2,Guo Weian2ORCID,Li Dongyang2

Affiliation:

1. Postgraduate of Faculty of Mechanical Engineering, RWTH Aachen University, 52062 Aachen, Germany

2. Sino-German College of Applied Sciences, Tongji University, Shanghai 200092, China

Abstract

Large-scale particle swarm optimization (PSO) has long been a hot topic due to the following reasons: Swarm diversity preservation is still challenging for current PSO variants for large-scale optimization problems, resulting in difficulties for PSO in balancing its exploration and exploitation. Furthermore, current PSO variants for large-scale optimization problems often introduce additional operators to improve their ability in diversity preservation, leading to increased algorithm complexity. To address these issues, this paper proposes a dual-competition-based particle update strategy (DCS), which selects the particles to be updated and corresponding exemplars with two rounds of random pairing competitions, which can straightforwardly benefit swarm diversity preservation. Furthermore, DCS confirms the primary and secondary exemplars based on the fitness sorting operation for exploitation and exploration, respectively, leading to a dual-competition-based swarm optimizer. Thanks to the proposed DCS, on the one hand, the proposed algorithm is able to protect more than half of the particles from being updated to benefit diversity preservation at the swarm level. On the other hand, DCS provides an efficient exploration and exploitation exemplar selection mechanism, which is beneficial for balancing exploration and exploitation at the particle update level. Additionally, this paper analyzes the stability conditions and computational complexity of the proposed algorithm. In the experimental section, based on seven state-of-the-art algorithms and a recently proposed large-scale benchmark suite, this paper verifies the competitiveness of the proposed algorithm in large-scale optimization problems.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Natural Science Foundation of Shanghai

The Study on the mechanism of industrial-education cocultivation for interdisciplinary technical and skilled personnel in Chinese intelligent manufacturing industry

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3