Improved SSA-Based GRU Neural Network for BDS-3 Satellite Clock Bias Forecasting

Author:

Liu Hongjie1,Liu Feng1ORCID,Kong Yao2,Yang Chaozhong3ORCID

Affiliation:

1. College of Computer Science, Xi’an Polytechnic University, Xi’an 710600, China

2. College of Electronics and Information, Xi’an Polytechnic University, Xi’an 710600, China

3. National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China

Abstract

Satellite clock error is a key factor affecting the positioning accuracy of a global navigation satellite system (GNSS). In this paper, we use a gated recurrent unit (GRU) neural network to construct a satellite clock bias forecasting model for the BDS-3 navigation system. In order to further improve the prediction accuracy and stability of the GRU, this paper proposes a satellite clock bias forecasting model, termed ITSSA-GRU, which combines the improved sparrow search algorithm (SSA) and the GRU, avoiding the problems of GRU’s sensitivity to hyperparameters and its tendency to fall into local optimal solutions. The model improves the initialization population phase of the SSA by introducing iterative chaotic mapping and adopts an iterative update strategy based on t-step optimization to enhance the optimization ability of the SSA. Five models, namely, ITSSA-GRU, SSA-GRU, GRU, LSTM, and GM(1,1), are used to forecast the satellite clock bias data in three different types of orbits of the BDS-3 system: MEO, IGSO, and GEO. The experimental results show that, as compared with the other four models, the ITSSA-GRU model has a stronger generalization ability and forecasting effect in the clock bias forecasting of all three types of satellites. Therefore, the ITSSA-GRU model can provide a new means of improving the accuracy of navigation satellite clock bias forecasting to meet the needs of high-precision positioning.

Funder

Youth Innovation Promotion Association

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3