Numerical Simulation Method for the Aeroelasticity of Flexible Wind Turbine Blades under Standstill Conditions

Author:

Wu Xianyou1,Liu Rongxiang2,Li Yan3,Lv Pin3ORCID,Gao Chuanqiang2ORCID,Feng Kai1

Affiliation:

1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

2. School of Aeronautic, Northwestern Polytechnical University, Xi’an 710072, China

3. Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd., Beijing 100176, China

Abstract

With the trend towards larger and lighter designs of wind turbines, blades are progressively being developed to have longer and more flexible configurations. Under standstill conditions, the separated flow induced by a wide range of incident flow angles can cause complex aerodynamic elastic phenomena on blades. However, classical momentum blade element theory methods show limited applicability at high angles of attack, leading to significant inaccuracies in wind turbine performance prediction. In this paper, the geometrically accurate beam theory and high-fidelity CFD method are combined to establish a bidirectional fluid–structure coupling model, which can be used for the prediction of the aeroelastic response of wind turbine blades and the analysis of fluid–structure coupling. Aeroelastic calculations are carried out for a single blade under different working conditions to analyze the influence of turbulence, gravity and other parameters on the aeroelastic response of the blade. The results show that the dominant frequency of the vibration deformation response in the edgewise direction is always the same as the first-order edgewise frequency of the blade when the incoming flow condition is changed. The loading of gravity will make the aeroelastic destabilization of the blade more significant, which indicates that the influence of gravity should be taken into account in the design of the aeroelasticity of the wind turbine. Increasing the turbulence intensity will change the dominant frequency of the vibration response in the edgewise direction, and at the same time, it will be beneficial to the stabilization of the aeroelasticity response.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3