Research on Multi-Objective Optimization of High-Speed Solenoid Valve Drive Strategies under the Synergistic Effect of Dynamic Response and Energy Loss

Author:

Yu Zhiqing1ORCID,Yang Li2,Zhao Jianhui1,Grekhov Leonid3

Affiliation:

1. School of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

2. China Shipbuilding Power Engineering Institute, Co., Ltd., Shanghai 200120, China

3. College of Power Engineering, Bauman Moscow State Technical University, Moscow 115569, Russia

Abstract

Under high-frequency operating conditions, the high-speed solenoid valve (HSV) experiences energy loss and heat generation, which significantly impacts its operational lifetime. Reducing the energy loss of an HSV without compromising its opening response characteristics poses a significant challenge. To address this issue, a finite element simulation model of an HSV coupled with a current feedback model is constructed to investigate the synergistic effects of dynamic response and energy loss. Prediction models for the opening response time, HSV driving energy, and Joule energy using a back propagation neural network (BPNN) are established. Furthermore, a multi-objective optimization study on the current driving strategy using a non-dominated sorting genetic algorithm II (NSGA-II) is conducted. After optimization, although there was a 6.24% increase in the opening response time, both HSV drive energy and Joule energy were significantly reduced by 15.67% and 22.49%, respectively. The proposed multi-objective optimization method for an HSV driving strategy holds great significance for improving its working durability.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3