Wind Power Bidding Based on an Ensemble Differential Evolution Algorithm with a Problem-Specific Constraint-Handling Technique

Author:

Huang Chao12ORCID,Zhao Zhenyu1,Li Qingwen3ORCID,Luo Xiong1ORCID,Wang Long1

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China

3. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The intermittent nature of wind power generation induces great challenges for power bidding in the electricity market. The deployment of battery energy storage can improve flexibility for power bidding. This paper investigates an optimal power bidding strategy for a wind–storage hybrid power plant in the day-ahead electricity market. To handle the challenges of the uncertainties of wind power generation and electricity prices, the optimal bidding problem is formulated as a risk-aware scenario-based stochastic programming, in which a number of scenarios are generated using a copula-based approach to represent the uncertainties. These scenarios consider the temporal correlation of wind power generation and electricity prices between consecutive time intervals. In the stochastic programming, a more practical but nonlinear battery operation cost function is considered, which leads to a nonlinear constrained optimization problem. To solve the nonlinear constrained optimization problem, an ensemble differential evolution (EDE) algorithm is proposed, which makes use of the merits of an ensemble of mutant operators to generate mutant vectors. Moreover, a problem-specific constraint-handling technique is developed. To validate the effectiveness of the proposed EDE algorithm, it is compared with state-of-the-art DE-based algorithms for constrained optimization problems, including a constrained composite DE (C2oDE) algorithm and a novel DE (NDE) algorithm. The experimental results demonstrate that the EDE algorithm is much more reliable and much faster in finding a better bidding strategy against benchmarking algorithms. More precisely, the average values of the success rate are 0.893, 0.667, and 0.96 for C2oDE, NDE, and EDE, respectively. Compared to C2oDE and NDE, the average value of the mean number of function evaluations to succeed with EDE is reduced by 76% and 59%, respectively.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Scientific and Technological Innovation Foundation of Foshan

Beijing Natural Science Foundation

Excellent Youth Team Project for the Central Universities

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3