Mn(II)-Activated Zero-Dimensional Zinc(II)-Based Metal Halide Hybrids with Near-Unity Photoluminescence Quantum Yield

Author:

Peng Chengyu1ORCID,Wei Jiazheng1,Duan Lian1,Tian Ye2ORCID,Wei Qilin3ORCID

Affiliation:

1. Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China

2. School of Semiconductors and Physics, North University of China, Taiyuan 030051, China

3. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Abstract

As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. However, pure zinc-based metal halide materials are still limited by their poor optical properties and cannot achieve large-scale practical applications. Therefore, in this work, we report an organic–inorganic hybrid zero-dimensional zinc bromide, (TDMP)ZnBr4, using transition metal Mn2+ ions as dopants and incorporating them into the (TDMP)ZnBr4 lattice. The original non-emissive (TDMP)ZnBr4 exhibits bright green emission under the excitation of external UV light after the introduction of Mn2+ ions with a PL peak position located at 538 nm and a PLQY of up to 91.2%. Through the characterization of relevant photophysical properties and the results of theoretical calculations, we confirm that this green emission in Mn2+:(TDMP)ZnBr4 originates from the 4T1 → 6A1 optical transition process of Mn2+ ions in the lattice structure, and the near-unity PLQY benefits from highly localized electrons generated by the unique zero-dimensional structure of the host material (TDMP)ZnBr4. This work provides theoretical guidance and reference for expanding the family of zinc-based metal halide materials and improving and controlling their optical properties through ion doping.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

open research fund of the State Key Laboratory of Dynamic Testing Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3