Abstract
Source localization with a passive sensors array is a common topic in various areas. Among the popular source localization algorithms, the compressive sensing (CS)-based method has recently drawn considerable interest because it is a high-resolution method, robust with coherent sources and few snapshots, and applicable for mixed near-field and far-field source localization. However, the CS-based methods rely on the dense grid to ensure the required estimation precision, which is time-consuming and impractical. This paper applies the complex variational mode decomposition (CVMD) to source localization. Specifically, the signal model of the source localization problem is similar to the time-domain frequency-modulated signal model. Motivated by this, we extend CVMD, initially designed for nonstationary time-domain signal analysis, to array signal processing. The decomposition results of the array measurements can correspond to the potential sources at different locations. Then, the sources’ direction and range can be estimated by model fitting with the decomposed subsignals. The simulation results show that the proposed CVMD-based method can locate the pure far-field, pure near-field, mixed far-field, and near-field sources. Notably, it can yield high-resolution localization for the coherent sources with one single snapshot with low computing time.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献