BepFAMN: A Method for Linear B-Cell Epitope Predictions Based on Fuzzy-ARTMAP Artificial Neural Network

Author:

La Marca Anthony F.ORCID,Lopes Robson da S.ORCID,Lotufo Anna Diva P.ORCID,Bartholomeu Daniella C.,Minussi Carlos R.ORCID

Abstract

The public health system is extremely dependent on the use of vaccines to immunize the population from a series of infectious and dangerous diseases, preventing the system from collapsing and millions of people dying every year. However, to develop these vaccines and effectively monitor these diseases, it is necessary to use accurate diagnostic methods capable of identifying highly immunogenic regions within a given pathogenic protein. Existing experimental methods are expensive, time-consuming, and require arduous laboratory work, as they require the screening of a large number of potential candidate epitopes, making the methods extremely laborious, especially for application to larger microorganisms. In the last decades, researchers have developed in silico prediction methods, based on machine learning, to identify these markers, to drastically reduce the list of potential candidate epitopes for experimental tests, and, consequently, to reduce the laborious task associated with their mapping. Despite these efforts, the tools and methods still have low accuracy, slow diagnosis, and offline training. Thus, we develop a method to predict B-cell linear epitopes which are based on a Fuzzy-ARTMAP neural network architecture, called BepFAMN (B Epitope Prediction Fuzzy ARTMAP Artificial Neural Network). This was trained using a linear averaging scheme on 15 properties that include an amino acid ratio scale and a set of 14 physicochemical scales. The database used was obtained from the IEDB website, from which the amino acid sequences with the annotations of their positive and negative epitopes were taken. To train and validate the knowledge models, five-fold cross-validation and competition techniques were used. The BepiPred-2.0 database, an independent database, was used for the tests. In our experiment, the validation dataset reached sensitivity = 91.50%, specificity = 91.49%, accuracy = 91.49%, MCC = 0.83, and an area under the curve (AUC) ROC of approximately 0.9289. The result in the testing dataset achieves a significant improvement, with sensitivity = 81.87%, specificity = 74.75%, accuracy = 78.27%, MCC = 0.56, and AOC = 0.7831. These achieved values demonstrate that BepFAMN outperforms all other linear B-cell epitope prediction tools currently used. In addition, the architecture provides mechanisms for online training, which allow the user to find a new B-cell linear epitope, and to improve the model without need to re-train itself with the whole dataset. This fact contributes to a considerable reduction in the number of potential linear epitopes to be experimentally validated, reducing laboratory time and accelerating the development of diagnostic tests, vaccines, and immunotherapeutic approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3