Optical Diagnostic Characterization of the Local Arc on Contaminated Insulation Surface at Low Pressure

Author:

Yang HaoORCID,Zhang Haotian,Cao Wen,Zhao Xuanxiang,Wen Ran,Zhao Junping,Tan Shengwu,Wang Pengchao

Abstract

Flashover of contaminated insulators is a major problem for power systems at high altitude. Laboratory experiments have shown that the optical diagnostic method can provide extensive information on the physical process of contamination flashover. In this paper, a study of the local arc on a wet polluted surface under low pressure by using the optical diagnostic method is presented. The thickness of the continuous spectrum, spectral line intensity and the spectral composition varies significantly in different stages of the local arc development. Thermodynamic parameters of the local arc (including electron temperature, electron density and conductivity) are obtained by analyzing the spectra. Both the electron temperature and the conductivity increase with the increase in leakage current and air pressure. Although the electron density does not change significantly with an increase in leakage current, it increases significantly with an increase in air pressure. The findings of this work could be used as supplementary information for the investigation of local arc parameters, thus providing a reliable reference for the calculation of contamination flashover at high altitude.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3