Tillage Strategy and Nitrogen Fertilization Methods Influences on Selected Soil Quality Indicators and Spring Wheat Yield under Semi-Arid Environmental Conditions of the Loess Plateau, China

Author:

Yuan Jianyu,Sadiq Mahran,Rahim Nasir,Li Guang,Yan Lijuan,Wu Jiangqi,Xu Guorong

Abstract

The influence of tillage and nitrogen fertilization methods on soil quality attributes and crop agronomic characteristics has been studied broadly under different agroclimatic conditions. Nevertheless, the interactive effect of tillage and fertilization approaches on soil properties on different soil depths and yield is rarely addressed, particularly on the Loess Plateau belt, and requires more exploration. Thus, this research was conducted in order to evaluate the interactive impact of tillage and nitrogen fertilization methods on soil properties and wheat productivity. The treatments included conventional tillage (CT) and no-till (NT) with different fertilization approaches (no fertilization: CK, chemical nitrogen fertilizer: N, organic fertilizer: M, combined application of nitrogen fertilizer and organic fertilizer: NM) and were explored in a split plot arrangement under a randomized complete block design replicated thrice on soil properties (SWC, SOC, TN, TP, NO3−-N, NH4+-N, and stoichiometric ratio) and wheat yield. The results showed that sole no-tillage and NT in association with nitrogen fertilization (inorganic and organic) significantly increased the soil water content, SOC, TN, NH4+-N, C/P, and N/P ratios and wheat productivity but did not significantly yield TP, whilst it reduced the NO3−-N and C/N ratio compared with sole CT and CT together with nitrogen fertilization (organic and inorganic). Overall, NT in association with the joint application of inorganic and organic N fertilization are the best techniques to improve soil water status and nutrient status under the wheat mono-cropping system conditions and yield.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3