Vibration Control of Multi-Modular VLFS in Random Sea Based on Stiffness-Adjustable Connectors

Author:

Xia ShuyanORCID,Yu Wen,Xu Daolin,Zhang HaichengORCID

Abstract

The response control of a very large floating structure (VLFS) is a crucial issue that affects the stability and safety of the structure. This paper presents a vibration control method for stabilizing the motion of a multi-modular VLFS by using a set of stiffness-adjustable connectors. The proposed connector consists of a cylindrical spring with an embedded actuator, making its stiffness adjustable. In a case study, a layout for such connectors is suggested to reduce the surge, heave, pitch, and yaw motions of the VLFS in random seas. To control the vibration responses of the VLFS, a mathematical model of the floating structure with the proposed connectors is established. A state feedback control scheme is developed using Sequential Quadratic Programming, which is able to adapt to varying wave conditions. Numerical studies indicate that the control method based on the stiffness-adjustable connectors was able to greatly reduce the responses of the modules when compared to flexible connectors and was also able to reduce the connector loads when compared to hinged connectors. Most importantly, this control method enables the elimination of resonant responses by changing the system stiffness.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3