Abstract
The 0-day attack is a cyber-attack based on vulnerabilities that have not yet been published. The detection of anomalous traffic generated by such attacks is vital, as it can represent a critical problem, both in a technical and economic sense, for a smart enterprise as for any system largely dependent on technology. To predict this kind of attack, one solution can be to use unsupervised machine learning approaches, as they guarantee the detection of anomalies regardless of their prior knowledge. It is also essential to identify the anomalous and unknown behaviors that occur within a network in near real-time. Three different approaches have been proposed and benchmarked in exactly the same condition: Deep Autoencoding with GMM and Isolation Forest, Deep Autoencoder with Isolation Forest, and Memory Augmented Deep Autoencoder with Isolation Forest. These approaches are thus the result of combining different unsupervised algorithms. The results show that the addition of the Isolation Forest improves the accuracy values and increases the inference time, although this increase does not represent a relevant problematic factor. This paper also explains the features that the various models consider most important for classifying an event as an attack using the explainable artificial intelligence methodology called Shapley Additive Explanations (SHAP). Experiments were conducted on KDD99, NSL-KDD, and CIC-IDS2017 datasets.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献