Multi-Factor Rear-End Collision Avoidance in Connected Autonomous Vehicles

Author:

Razzaq SheebaORCID,Dar Amil Roohani,Shah Munam AliORCID,Khattak Hasan AliORCID,Ahmed Ejaz,El-Sherbeeny Ahmed M.ORCID,Lee Seongkwan MarkORCID,Alkhaledi Khaled,Rauf Hafiz TayyabORCID

Abstract

According to World Health Organization (WHO), the leading cause of fatalities and injuries is rear-ending collision in vehicles. The critical challenge of the technologically rich transportation system is to reduce the chances of accidents between vehicles. For this purpose, it is especially important to analyze the factors that are the cause of accidents. Based on these factors’ results, this paper presents a driver assistance system for collision avoidance. There are many factors involved in collisions in the existing literature from which we identified some factors which can affect the accident occurrence probability. However, with advancements in the technologies of autonomous vehicles, these factors can be controlled using an onboard driver assistance system. We used MATLAB’s Fuzzy Inference System Tool to analyze the categories of accident contributing factors. Fuzzy results are validated using the VOMAS agent in the NetLogo simulation model. The proposed system can inform the vehicle’s automated system when chances of an accident are higher so that the vehicle may take control from the driver. The proposed research is extremely helpful in handling various kinds of factors involved in accidents. The results of the experiments demonstrated that multi-factor-enabled vehicles could better avoid collision as compared to other vehicles.

Funder

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3