Effect of Vanadium and Rare Earth on the Structure, Phase Transformation Kinetics and Mechanical Properties of Carbide-Free Bainitic Steel Containing Silicon

Author:

Garmeh Behdad,Kasiri-Asgarani Masoud,Amini Kamran,Ghayour Hamid,Bakhsheshi-Rad Hamid Reza,Berto Filippo

Abstract

Carbide-free bainitic (CFB) steels with a matrix of bainitic ferrite and thin layers of retained austenite, to reduce the manufacturing costs, usually do not contain alloying elements. However, a few reports were presented regarding the effect of alloying elements on the properties of these steels. Thus, this study evaluates the effects of vanadium and rare earth (Ce-La) microalloying elements on the structure, phase transformation kinetics, and mechanical properties of carbide-free bainite steel containing silicon fabricated by the casting and austempering procedure. Optical and scanning electron microscopy (OM and SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) were used to study the microstructure and phase structure. The transformation kinetics were examined by a dilatometry test. Hardness, tensile, and impact tests evaluated the mechanical properties. Due to adding alloying elements, the fracture toughness and change in matrix phases relation was studied by the crack tip opening displacement (CTOD) test and SEM fractography. The microstructure of the silicon added sample was completely carbide-free bainite. The test results showed vanadium helped CFB formation, even in continuous cooling. The primary austenite grain (PAG) size grew by vanadium addition. The EBSD phase map illustrates an increment in the percentage of retained austenite by vanadium. In contrast, the addition of 0.03 wt% rare earth reduced the primary austenite grain size and reduced the retained austenite content. The results of the dilatometry test confirmed that vanadium and rare earth addition both reduced the critical cooling rate of the bainite transformation. Vanadium leads to an earlier cessation of bainite transformation, while rare earth elements postpone this transformation. Mechanical tests showed that the tensile strength of carbide-free bainite steels was strongly influenced by the morphology and volume fraction of austenite. Retained austenite, when transformed to martensite during the transformation-induced plasticity (TRIP) phenomenon, leads to increased tensile strength and fracture toughness, or retained austenite with a film-like shape prevents the growth of cracks by blinding the crack tip. The result of the CTOD test exhibited that retained austenite plays the leading role in increasing crack resistance when TRIP occurs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness;Met. Technol.,1981

2. Very strong low temperature bainite;Mater. Sci. Technol.,2002

3. Bhadeshia, H. (2001). Bainite in Steels: Transformation, Microstructure and Properties, IOM.

4. Low temperature bainite;J. Phys. IV,2003

5. Bainite in silicon steels: New composition–property approach Part 1;Met. Sci.,1983

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3