Keratinophilic and Keratinolytic Fungi in Cave Ecosystems: A Culture-Based Study of Brestovská Cave and Demänovská Ľadová and Slobody Caves (Slovakia)

Author:

Ogórek RafałORCID,Suchodolski Jakub,Piecuch AgataORCID,Przywara Katarzyna,Višňovská Zuzana

Abstract

Despite speleomycological research going back to the 1960s, the biodiversity of many specific groups of micromycetes in underground sites still remains unknown, including keratinolytic and keratinophilic fungi. These fungi are a frequent cause of infections in humans and animals. Since subterranean ecosystems are inhabited by various animals and are a great tourist attraction, the goal of our research was to provide the first report of keratinophilic and keratinolytic fungal species isolated from three caves in Tatra Mts., Slovakia (Brestovská, Demänovská Ľadová and Demänovská Slobody). Speleomycological investigation was carried out inside and outside the explored caves by combining culture-based techniques with genetic and phenotypic identifications. A total of 67 fungal isolates were isolated from 24 samples of soil and sediment using Vanbreuseghem hair bait and identified as 18 different fungal species. The study sites located inside the studied caves displayed much more fungal species (17 species) than outside the underground (3 species), and the highest values of the Shannon diversity index of keratinophilic and keratinolytic fungi were noted for the study sites inside the Demänovská Slobody Cave. Overall, Arthroderma quadrifidum was the most common fungal species in all soil and/or sediment samples. To the best of our knowledge, our research has allowed for the first detection of fungal species such as Arthroderma eboreum, Arthrodermainsingulare, Chrysosporiumeuropae, Chrysosporiumsiglerae, Keratinophytonwagneri, and Penicillium charlesii in underground sites. We also showed that the temperature of soil and sediments was negatively correlated with the number of isolated keratinophilic and keratinolytic fungal species in the investigated caves.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3