Effects of Chronic Low-Dose Internal Radiation on Immune-Stimulatory Responses in Mice

Author:

Khan Abrar Ul Haq,Blimkie Melinda,Yang Doo Seok,Serran Mandy,Pack Tyler,Wu Jin,Kang Ji-Young,Laakso Holly,Lee Seung-HwanORCID,Le Yevgeniya

Abstract

The Linear-No-Threshold (LNT) model predicts a dose-dependent linear increase in cancer risk. This has been supported by biological and epidemiological studies at high-dose exposures. However, at low-doses (LDR ≤ 0.1 Gy), the effects are more elusive and demonstrate a deviation from linearity. In this study, the effects of LDR on the development and progression of mammary cancer in FVB/N-Tg(MMTVneu)202Mul/J mice were investigated. Animals were chronically exposed to total doses of 10, 100, and 2000 mGy via tritiated drinking water, and were assessed at 3.5, 6, and 8 months of age. Results indicated an increased proportion of NK cells in various organs of LDR exposed mice. LDR significantly influenced NK and T cell function and activation, despite diminishing cell proliferation. Notably, the expression of NKG2D receptor on NK cells was dramatically reduced at 3.5 months but was upregulated at later time-points, while the expression of NKG2D ligand followed the opposite trend, with an increase at 3.5 months and a decrease thereafter. No noticeable impact was observed on mammary cancer development, as measured by tumor load. Our results demonstrated that LDR significantly influenced the proportion, proliferation, activation, and function of immune cells. Importantly, to the best of our knowledge, this is the first report demonstrating that LDR modulates the cross-talk between the NKG2D receptor and its ligands.

Funder

Mitacs Elevate Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference100 articles.

1. Historical development of the linear nonthreshold dose-response model as applied to radiation;Kathren;Pierce Law Rev.,2002

2. Low-Dose Extrapolation of Radiation-Related Cancer Risk;Valentin,2006

3. Computed Tomography — An Increasing Source of Radiation Exposure

4. Treatment of Cancer and Inflammation With Low-Dose Ionizing Radiation

5. Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3