Abstract
The solidification characteristics of 70 steel at the stage of the superheat elimination and the liquid–solid phase transformation were analyzed at cooling rates from 10 to 150 °C/min based on a high-temperature confocal scanning laser microscope (HT-CSLM). Secondary dendrite arm spacing (SDAS) and fractal dimension (D) were used to quantitatively describe the local compactness and overall self-similar complexity of the solidification morphology. It was found that the cooling rate had a very important influence on the local and overall morphology characteristics of solidification structures. At the superheat elimination stage, the cooling rate affected the morphology of the microstructure through the dynamic structural fluctuation between the generation and disappearance of atomic clusters in the molten steel. At the liquid–solid phase transformation stage, the cooling rate affected the local morphology of the microstructure by affecting the solute diffusion rate between dendrite arms, while it affected the overall morphology by changing the concentration undercooling at the front of all solidified interfaces. The presented results show that adjusting the cooling system at the superheat elimination stage can also be an important way to control the solidified morphology of different alloys.
Funder
United Funds between National Natural Science Foundation and Baowu Steel Group Corporation Limited of China
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献