Tool Wear Analysis during Ultrasonic Assisted Turning of Nimonic-90 under Dry and Wet Conditions

Author:

Airao JayORCID,Nirala Chandrakant K.ORCID,Lacalle Luis Noberto López deORCID,Khanna NavneetORCID

Abstract

Nickel-based superalloys are widely used in the aerospace, automotive, marine and medical sectors, owing to their high mechanical strength and corrosion resistance. However, they exhibit poor machinability due to low thermal conductivity, high shear modulus, strain hardening, etc. Various modifications have been incorporated into existing machining techniques to address these issues. One such modification is the incorporation of ultrasonic assistance to turning operations. The assisted process is popularly known as ultrasonic assisted turning (UAT), and uses ultrasonic vibration to the processing zone to cut the material. The present article investigates the effect of ultrasonic vibration on coated carbide tool wear for machining Nimonic-90 under dry and wet conditions. UAT and conventional turning (CT) were performed at constant cutting speed, feed rate and depth of cut. The results show that the main wear mechanisms were abrasion, chipping, notch wear and adhesion of the built-up edge in both processes. However, by using a coolant, the formation of the built-up edge was reduced. CT and UAT under dry conditions showed an approximate reduction of 20% in the width of flank wear compared to CT and UAT under wet conditions. UAT showed approximate reductions of 6–20% in cutting force and 13–27% in feed force compared to the CT process. The chips formed during UAT were thinner, smoother and shorter than those formed during CT.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3