Differences in Deformation Behaviors Caused by Microband-Induced Plasticity of [0 0 1]- and [1 1 1]-Oriented Austenite Micro-Pillars

Author:

Cui Yuan-Yuan,Jia Yun-Fei,Xuan Fu-Zhen

Abstract

A uniaxial compression test and scanning/transmission electron microscopy observations were performed to investigate the differences in mechanical behavior and deformed microstructure between focused ion beam-manufactured [1 1 1]- and [0 0 1]-oriented austenite micro-pillars with 5 μm diameter from duplex stainless steel. After yielding, the strain hardening of two orientation micro-pillars increased sharply as a result of the formation of a microband, namely microband-induced plasticity, MBIP. The same phenomenon could be observed in a [0 0 1]-oriented pillar due to the activation of the secondary slip system, while slight strain hardening behavior was observed in the [1 1 1] orientation because of the refinement of the microband. Furthermore, the trend of the calculated strain hardening rates of both [1 1 1]- and [0 0 1]-oriented micro-pillars were in good agreement with the experimental data. This study proved that MBIP can be helpful for the mechanical property enhancement of steels.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3