Theoretical Study of Hydrogen on LaFeO3 (010) Surface Adsorption and Subsurface Diffusion

Author:

Pan Changchang,Chen Yuhong,Zhang Meiling,Yuan Lihua,Zhang CairongORCID

Abstract

Based on density functional theory, this paper studies the adsorption and the subsurface occupation by H on LaFeO3 (010) surface and their corresponding transition states. As shown from the results, the best storage positions of hydrogen are on the O top position of the LaFeO3 (010) surface and the interstice near the oxygen of the subsurface. In addition, the position of surface Fe atom can also store hydrogen, but H atom prefers to adsorb on O atom first. Whether the H atom is adsorbed on O or Fe atom, it is easy diffuse to the nearby more stable O atom. However, the diffusion between the Fe atoms is difficult to occur. The main diffusion path of the H atom from the surface to the subsurface is the process of inward layer by layer around the O atom. With the fracture of the old H–O bond and the formation of the new H–O bond, the H is around O atom to constantly repeat the process of a hopping-rotational diffusion. H diffuses through the nearest neighbor position, which is more favorable than the direct diffusion.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3