The Effect of pH Solution in the Sol–Gel Process on the Structure and Properties of Thin SnO2 Films

Author:

Murzalinov DanatbekORCID,Dmitriyeva Elena,Lebedev Igor,Bondar Ekaterina A.,Fedosimova Anastasiya I.,Kemelbekova Ainagul

Abstract

The synthesis of surface-active structures is important for creating many applications. The structural formation of SnO2 thin films in the range from 1.4 to 1.53 pH is studied in this work. This process occurs on the surface of the sample in the range of 1.4 to 1.49 and in the volume in the range of 1.51 to 1.53. SnO2 is formed after annealing at 400 ∘C, according to XRD. Doping NH4OH to solution stimulates particle coagulation and gel formation. All of these have an impact on the transparency of samples investigated by spectrophotometric methods. By increasing the pH, the resistance raises at room temperature. The Eg calculation along the fundamental absorption edge shows that it is greater than 3.6 eV’ for SnO2 films. According to the Burstein–Moss effect, a change of the bandgap is related to the increased concentration of the free charge carriers. Elemental analysis has shown that chlorine ions are considered to be additional sources of charge carriers. The value pH = 1.49 is critical since there is a drastic change in the structure of the samples, the decrease in transparency is replaced by its increase, and the energy of activation of impurity levels is changed.

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3