A Novel Resource Allocation and Spectrum Defragmentation Mechanism for IoT-Based Big Data in Smart Cities

Author:

Peng YuhuaiORCID,Wang Jiaying,Tan Aiping,Wu Jingjing

Abstract

People’s demand for high-traffic applications and the need for Internet of Things (IoT) are enormous in smart cities. The amount of data generated by virtual reality, high-definition video, and other IoT applications is growing at an exponential rate that far exceeds our expectations, and the types of data are becoming more diverse. It has become critical to reliably accommodate IoT-based big data with reasonable resource allocation in optical backbone networks for smart cities. For the problem of reliable transmission and efficient resource allocation in optical backbone networks, a novel resource allocation and spectrum defragmentation mechanism for massive IoT traffic is presented in this paper. Firstly, a routing and spectrum allocation algorithm based on the distance-adaptive sharing protection mechanism (DASP) is proposed, to obtain sufficient protection and reduce the spectrum consumption. The DASP algorithm advocates applying different strategies to the resource allocation of the working and protection paths. Then, the protection path spectrum defragmentation algorithm based on OpenFlow is designed to improve spectrum utilization while providing shared protection for traffic demands. The lowest starting slot-index first (LSSF) algorithm is employed to remove and reconstruct the optical paths. Numerical results indicate that the proposal can effectively alleviate spectrum fragmentation and reduce the bandwidth-blocking probability by 44.68% compared with the traditional scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3