Chemical Characterization and Bioactive Properties of Wine Lees and Diatomaceous Earth towards the Valorization of Underexploited Residues as Potential Cosmeceuticals

Author:

Duarte Cristina N.123ORCID,Taofiq Oludemi124ORCID,Dias Maria Inês12ORCID,Heleno Sandrina A.12ORCID,Santos-Buelga Celestino3ORCID,Barros Lillian12ORCID,Amaral Joana S.12ORCID

Affiliation:

1. Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

2. Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, E-37007 Salamanca, Spain

4. Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain

Abstract

Annually, wine production is responsible for generating large quantities of residues, which are frequently disposed of and not valorized. So far, different studies have been conducted on grape pomace, yet less attention has been paid to other residues, such as wine lees and diatomaceous earth used in wine filtration. In this context, this study aimed to evaluate and compare the phenolic profile of these underexploited winemaking residues and assess their biological potential based on their antioxidant, antimicrobial, cytotoxic, and anti-aging activities (inhibition of tyrosinase and collagenase). Twenty-nine phenolic compounds, including twelve anthocyanins, were tentatively identified in the residues, with red grape pomace showing the highest diversity of compounds. The diatomaceous earth presented the highest content of non-anthocyanin phenolic compounds, being particularly rich in flavan-3-ols and myricetin-O-hexoside, and also presenting two anthocyanins. This sample also showed a high antioxidant activity, evidencing the best result in the reducing power assay. The red wine lees extract, despite showing a low content of phenolic compounds and less antioxidant activity, presented the highest inhibition capacity of bacteria growth. The extracts did not exhibit cytotoxicity against keratinocyte (up to 400 μg/mL) and fibroblast (up to 100 μg/mL) skin cell lines. However, the capacity of inhibiting tyrosinase and collagenase was low for the lees and diatomaceous earth, contrary to the grape pomace, seeds, and skins extracts that showed promising results, evidencing its potential as a cosmeceutical. Overall, this study highlights for the first time the potential of diatomaceous earth, an underexploited winemaking waste, in the obtention of added-value extracts and/or ingredients for cosmetic industry.

Funder

COMPETE 2020

national funds FCT/MCTES (PIDDAC) to CIMO

COST

MICINN

Junta de Castilla y León

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3