Skin Retention of Sorbates from an After Sun Formulation for a Broad Photoprotection

Author:

Padula Cristina,Pescina Silvia,Grolli Lucca Leticia,Demurtas Anna,Santi Patrizia,Nicoli SaraORCID

Abstract

Overexposure to sunlight is widely accepted as the underlying cause of cutaneous melanoma. UV radiation induces the formation of DNA photoproducts that, if unrepaired, can induce carcinogenic mutations. Recent data indicate that sorbates can be useful to widen the protection against UV radiation by acting as a triplet-state quencher in the melanocyte. The aim of the present work was to prepare an after sun formulation containing ethylsorbate or sorbic acid in order to take advantage of the triplet-state quenching activity of these molecules and protect the skin from UV-induced damages. Ethylsorbate and sorbic acid were characterized in terms of solubility and partition coefficient, and their transdermal permeation and skin accumulation were studied in vitro from simple solutions and in the presence of cyclodextrins (alpha and hydroxypropylbeta) as a complexing agent. The goal was to reduce as much as possible sorbates permeation while sustaining their skin levels. The obtained results indicated that the addition of alphacyclodextrins determined a 6-folds (ethylsorbate ) or 4-folds (sorbic acid) reduction of the transdermal permeation. Sorbic acid and alphacyclodextrin (1:1 molar ratio) were then formulated in an after sun vehicle using 1.5% hyaluronic acid (sodium salt) as a thickener and hydrating agent. The addition of hyaluronic acid gave rise to a formulation with good cosmetic properties and good sorbate (0.2–0.3 µmol/cm2) skin levels (stratum corneum + viable epidermis) and thus a potential protection against post-exposure UV damage.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Ageing,Chemical Engineering (miscellaneous),Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3