Printable and Flexible Iridium Oxide-Based pH Sensor by a Roll-to-Roll Process

Author:

Chawang Khengdauliu1ORCID,Bing Sen1ORCID,Chiao Jung-Chih1ORCID

Affiliation:

1. Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA

Abstract

A flexible pH sensor based on using iridium oxide (IrOx) as the sensing film was developed by the roll-to-roll (R2R) process. The inert and biocompatible properties of IrOx make it a desired metal oxide for pH-sensing applications. The flexible substrates being continuously processed by the R2R technique provides the advantages of scalability, reconfigurability, resiliency, on-demand manufacturing, and high throughput, without the need for vacuum systems. Potential sweeps by cyclic voltammetry across the IrOx film against commercial and planar Ag/AgCl electrodes validated the reversible electrochemical mechanisms. Multiple IrOx electrodes showed similar output potentials when continuously tested in the pH range of 2–13, indicating good fabrication uniformity. For practical applications, planar IrOx/Ag-AgCl pairs developed on polyimide substrates were tested, with a good linear fit within pH 2–13, achieving Nernstian responses of around −60.6 mV/pH. The pH sensors showed good repeatability when analyzed with hysteresis, drift, fluctuation, and deviation as the stability factors. The selectivity of the interference ions and the effect of temperature were studied and compared with the reported values. The electrodes were further laminated in a process compatible with the R2R technique for packaging. The flexible sensors were tested under flat and curved surface conditions. Tests in artificial sweat and viscous solutions were analyzed in the Clarke error grid, showing reliable pH-sensing performance. The materials used during the manufacturing processes were sustainable, as the active materials were in small amounts and there was no waste during processing. No toxic chemicals were needed in the fabrication processes. The cost-effective and efficient materials and the fabrication process allow for rapid production that is necessary for disposable and point-of-care devices. Flexible electronics provide a platform for device and sensor integration and packaging, which enables Internet-of-things (IoT) network applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference106 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3