Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy

Author:

Pál Petra1,Horváth Viktória2,Juhász Laura3ORCID,Kóródi Zoltán1,Kohut Attila2,Csarnovics Istvan1ORCID

Affiliation:

1. Department of Experimental Physics, Institute of Physics, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary

2. Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary

3. Department of Solid State Physics, Institute of Physics, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary

Abstract

This paper presents a systematic study of the investigation of nanoparticle (NP) agglomerate films fabricated via depositing spark-generated Au, Ag, and Au/Ag NPs onto quartz microscope coverslips in a low-pressure inertial impactor. The primary focus of the study is to characterize these nanostructures and to examine their potential application in surface-enhanced Raman spectroscopy (SERS). The characterization of the produced nanostructures was carried out by performing optical absorbance measurements, morphology, and composition analysis, as well as testing the SERS performance of the NP films at three different excitation laser wavelengths in the visible range. The study aims to investigate the relationship between the optical properties, the morphology, and the enhancement of the produced samples at different excitations, and the results are presented and discussed. The study highlights the potential of using spark ablation and inertial impaction-based deposition as a method for producing nanoparticle films for SERS.

Funder

National Research, Development and Innovation Fund

Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3