Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application

Author:

Tortolini Cristina,Tasca FedericoORCID,Venneri Mary AnnaORCID,Marchese CinziaORCID,Antiochia RiccardaORCID

Abstract

Herein, the effects of nanostructured modifications of a gold electrode surface in the development of electrochemical sensors for L-ascorbic acid detection have been investigated. In particular, a bare gold electrode has been modified by electrodeposition of gold single-walled carbon nanotubes (Au/SWCNTs) and by the formation of a highly nanoporous gold (h-nPG) film. The procedure has been realized by sweeping the potential between +0.8 V and 0 V vs. Ag/AgCl for 25 scans in a suspension containing 5 mg/mL of SWCNTs in 10 mM HAuCl4 and 2.5 M NH4Cl solution for Au/SWCNTs modified gold electrode. A similar procedure was applied for a h-nPG electrode in a 10 mM HAuCl4 solution containing 2.5 M NH4Cl, followed by applying a fixed potential of −4 V vs. Ag/AgCl for 60 s. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the properties of the modified electrodes. The developed sensors showed strong electrocatalytic activity towards ascorbic acid oxidation with enhanced sensitivities of 1.7 × 10−2 μA μM−1cm−2 and 2.5 × 10−2 μA μM−1cm−2 for Au/SWCNTs and h-nPG modified electrode, respectively, compared to bare gold electrode (1.0 × 10−2 μA μM−1cm−2). The detection limits were estimated to be 3.1 and 1.8 μM, respectively. The h-nPG electrode was successfully used to determine ascorbic acid in human urine with no significant interference and with satisfactory recovery levels.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference81 articles.

1. Biological significance of ascorbic acid (vitamin C) in human health—A review;Iqbal;Pak. J. Nutr.,2004

2. Vitamin C: Its Chemistry and Biochemistry;Davies,1991

3. Ascorbic acid: much more than just an antioxidant

4. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention

5. Vitamin C and Immune Function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3