SERS of Human Red Blood Cells in Non-Resonant Conditions: Benefits, Limitations, and Complementary Tools (CytoViva and GFAAS)

Author:

Wells Kelsey L.1,Alla Praveen K.1,Kaiser Kyra G.2,Murgulet Ioana T.2,Adragna Norma C.1,Pavel Ioana E.2

Affiliation:

1. Department of Chemistry and Department of Pharmacology and Toxicology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435-0001, USA

2. Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, USA

Abstract

Herein, Raman and surface-enhanced Raman spectroscopies (SERS) were successfully employed to establish the chemical interactions of citrate-capped silver nanoparticles (AgNPs, 10–15 nm) with human red blood cells (RBCs). The Raman/SERS spectra offered spectral evidence for the cellular uptake of AgNPs and the subsequent change in the conformation of the most abundant component, hemoglobin (Hb), from oxyhemoglobin to deoxyhemoglobin. The spectral characterization of AgNPs’ interactions with other RBC biomarkers (membrane proteins and lipids) was impeded by the dominant Hb bands, even for non-resonant Hb conditions. CytoViva hyperspectral imaging and graphite furnace atomic absorption spectroscopy (GFAAS) served as complementary tools to effectively address the challenges related to a single excitation line (632.8 nm) and the resolution of the confocal Raman microscope (0.5–1.0 µm). CytoViva confirmed the RBC-AgNP interactions through hyperspectral signatures and facilitated the label-free localization of AgNPs extracellularly and intracellularly. Irreversible agglutination of RBCs was noted after 24 h of exposure, raising concerns about the toxicity of AgNPs of biocompatible citrate coatings. GFAAS validated the Raman/SERS results by quantifying the proportion of AgNPs absorbed by RBCs, which was significant (~48% AgNPs by mass), mostly at the membrane (60% RBCs), and size dependent (no large AgNPs or AgNP-aggregates in RBCs, after 12–24 h).

Funder

National Science Foundation

Texas A&M University Corpus Christi (TAMU-CC), TX, USA

Wright State University (WSU), OH, USA

The 2022 TAMU-CC Student Research Competition

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3