Gas-Sensing Performance of Gadolinium Ferrates with Rod and Butterfly Morphologies

Author:

Lin Jianbo12,Liu Ningning1,Zhang Tongxiao3,Liang Hongjian1,Zhang Guozheng1,Wang Xiaofeng1ORCID

Affiliation:

1. Key Laboratory of Materials Modification by Laser Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China

2. Key Laboratory of Fire & Rescue Technology and Equipment, MEM, Shanghai 200032, China

3. Leicester International Institute, Dalian University of Technology, Panjin Campus, Panjin 124221, China

Abstract

There is an urgent need to develop a low-cost and high-performance gas sensor for industrial production and daily life. Perovskite-type oxides are appropriate materials for resistive gas sensors. In this paper, two gas-sensing materials of gadolinium orthoferrite (GdFeO3) with rod and butterfly morphologies were obtained by annealing the corresponding precursors at 800 °C in a muffle furnace for 3 h. The precursors of GdFe(CN)6·4H2O with novel morphologies were prepared by a co-precipitation method at room temperature. The materials were evaluated in terms of their structure, morphology, and gas-sensing performance. The gas sensor based on GdFeO3 rods showed a better sensing performance than the sensor based on GdFeO3 butterflies. It exhibited the largest response value of 58.113 to 100 ppm n-propanol at a relatively low operating temperature of 140 °C, and the detection limit was 1 ppm. The results show that the GdFeO3 rods-based sensor performed well in detecting low concentration n-propanol. The satisfactory gas-sensing performance of the GdFeO3 rods-based sensor may be due to the porous structure and the large percentages of defect oxygen and adsorbed oxygen (37.5% and 14.6%) on the surface. This study broadens the application of GdFeO3 in the gas sensor area.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3