High-Temperature-Sensing Smart Bolt Based on Indium Tin Oxide/In2O3 Thin-Film Thermocouples with Nickel-Based Single-Crystal Superalloy via Screen Printing

Author:

Zhang ZhongkaiORCID,Liu Jiangjiang,Cai Rongfu,Liu ZhaojunORCID,Lei Jiaming,Sun Ruolin,Wu Ningning,Zhao NaORCID,Tian BianORCID,Zhao Libo

Abstract

In this study, thin-film thermocouples (TFTCs) were combined with a smart bolt to design a smart bolt that can directly test high temperature in service monitoring and parameter calculation for gas turbine structure design. The first-principles calculation was used to analyze the design of the surface properties of nickel-based alloys and insulating layers, and finite element analysis was used to optimize dimension parameters by controlling the thermal stress matching of insulating layers and sensitive layers. The effect of the glass powder with different particle sizes on the microstructure of the ITO and In2O3 films was studied via SEM. The preferred particle size of the additive glass powder is 400 nm. The XRD pattern shows the (222) peak has the highest intensity. The intensities of the (222) and (622) peaks increase after the heat treatment. The calibration results show that the average Seebeck coefficient of the TFTCs can reach 64.9 μV/°C at 1100 °C with a maximum voltage of 71.4 mV. The repeatability error of the cycles of the sensor after heat treatment is ±1.05%. The repeatability of the sensor is up to 98.95%. The smart bolts were tested for application in small aero engines. It can be seen that under the impact of 1000 °C, the thermal response of the prepared smart bolt is better than that of the K-type armored thermocouple, and the thermal balance is achieved faster. The intelligent bolt sensor proposed in this work has better engineering application prospects owing to its convenience of installation in harsh environments.

Funder

National Key Research and Development Program of China

Natural Science Basic Research Program of Shaanxi

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference36 articles.

1. The measure method of surface temperature in aero-engine;Cai;Meas. Technol.,2008

2. Progress and Application of High Temperature Structural Materials on Aero-Engine;Liu;Gas Turbine Exp. Res.,2014

3. ITO thin film thermocouple for dynamic inner wall temperature measurement of supersonic combustion;Jin;Proceedings of the 2017 IEEE SENSORS,2017

4. A Fast Response Sensor for Continuously Measuring Molten Steel Temperature

5. A fast response thermocouple for internal combustion engine surface temperature measurements

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3