Engineering SERS Properties of Silicon Nanotrees at the Nanoscale

Author:

Gebavi Hrvoje,Pál PetraORCID,Csarnovics IstvánORCID,Gašparić VlatkoORCID,Ivanda MileORCID

Abstract

Large specific surface area nanostructures are desirable in a wide range of sensing applications due to their longer light-trapping path and increased absorption. Engineering of the specific nanotree structure which possesses a high branch density turned out to be challenging from the experimental point of view, and certainly not adequately explored. This paper shows how to design substrates with a silicon nanotree structure for surface-enhanced Raman spectroscopy (SERS) applications. Silicon nanotrees were synthesized by a Ag-Au nanocluster-catalyzed low-pressure chemical vapor deposition method (LPCVD). By the presented approaches, it is possible to manipulate branches’ number, length and thickness. The synthesized nanostructures are flexible after immersion in water which improves SERS performance. The amount of sputtered metal played a key role in preserving the flexibility of the nanotree structure. The obtained substrates with highly fractal nanostructure were tested on 4-mercaptophenylboronic acid (MPBA) to match the optimal SERS parameters. The silicon nanotrees fabrication, and particularly obtained SERS substrates plated with Ag and Au nanoparticles, demonstrated good features and a promising approach for further sensor development.

Funder

Croatian Government and the European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

New National Excellence Program of the Ministry of Human Capacities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peculiarities of using different nanostructures for surface-enhanced Raman scattering;2023 46th International Spring Seminar on Electronics Technology (ISSE);2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3