Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors

Author:

Shaalan Nagih M.ORCID,Ahmed FaheemORCID,Saber OsamaORCID,Kumar ShalendraORCID

Abstract

The rapid development of the human population has created demand for an increase in the production of food in various fields, such as vegetal, animal, aquaculture, and food processing. This causes an increment in the use of technology related to food production. An example of this technology is the use of gases in the many steps of food treatment, preservation, processing, and ripening. Additionally, gases are used across the value chain from production and packaging to storage and transportation in the food and beverage industry. Here, we focus on the long-standing and recent advances in gas-based food production. Although many studies have been conducted to identify chemicals and biological contaminants in foodstuffs, the use of gas sensors in food technology has a vital role. The development of sensors capable of detecting the presence of target gases such as ethylene (C2H4), ammonia (NH3), carbon dioxide (CO2), sulfur dioxide (SO2), and ethanol (C2H5OH) has received significant interest from researchers, as gases are not only used in food production but are also a vital indicator of the quality of food. Therefore, we also discuss the latest practical studies focused on these gases in terms of the sensor response, sensitivity, working temperatures, and limit of detection (LOD) to assess the relationship between the gases emitted from or used in foods and gas sensors. Greater interest has been given to heterostructured sensors working at low temperatures and flexible layers. Future perspectives on the use of sensing technology in food production and monitoring are eventually stated. We believe that this review article gathers valuable knowledge for researchers interested in food sciences and sensing development.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3