Recent Sensing Technologies of Imperceptible Water in Atmosphere

Author:

Mekawy Moataz,Kawakita Jin

Abstract

Accurate detection and quantitative evaluation of environmental water in vapor and liquids state expressed as humidity and precipitation play key roles in industrial and scientific applications. However, the development of supporting tools and techniques remains a challenge. Although optical methods such as IR and LASER could detect environmental water in the air, their apparatus is relatively huge. Alternatively, solid detection field systems (SDFSs) could recently lead to a revolution in device downsizing and sensing abilities via advanced research, mainly for materials technology. Herein, we present an overview of several SDFS based sensing categories and their core materials mainly used to detect water in atmosphere, either in the vapor or liquid phase. We considered the governing mechanism in the detection process, such as adsorption/desorption, condensation/evaporation for the vapor phase, and surface attach/detach for the liquid phase. Sensing categories such as optical, chilled mirror, resistive, capacitive, gravimetric sensors were reviewed together with their designated tools such as acoustic wave, quartz crystal microbalance, IDT, and many others, giving typical examples of daily based real scientific applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3