Rapid Fabrication of Homogeneous Submicron Silver Particles via a Microfluidic Chip and Use as a SERS Detection Substrate

Author:

Chen Junjie1,Li Suyang2,Yao Fuqi1,Xu Wanbing2,Li Yunfeng3ORCID,Chen Qiang1,Liang Pei2ORCID

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

2. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China

3. College of Information Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Silver particles have been widely used in SERS detection as an enhancement substrate. The large-scale synthesis of Ag particles with controllable size and shape is still a challenge. We demonstrate a high-throughput method for the preparation of monodisperse submicron silver particles using S-shaped microfluidic chips. Submicron silver particles were prepared by a simplified reduction method. By adjusting the concentration of the reducing agent ascorbic acid and the stabilizer PVP, the particle size and morphology could be controlled, obtaining a size distribution of 1–1.2 μm for flower-like silver particles and a size distribution of 0.5–0.7 μm for quasi-spherical silver particles. This microfluidic system can be used to fabricate submicron silver particles on a large scale, continuously and stably, with a production efficiency of around 1.73 mg/min. The synthesized submicron silver particles could realize ultra-sensitive SERS detection, and the lowest concentration of rhodamine 6G (R6G) that could be detected was 10−9 M.

Funder

National Key R&D Program of China

Beijing Science and technology project

the National Key Research and Development Program project

the Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3