Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case

Author:

Maragaño-Carmona Gonzalo123ORCID,Fustos Toribio Ivo J.1ORCID,Descote Pierre-Yves2,Robledo Luis F.2ORCID,Villalobos Diego2,Gatica Gustavo2ORCID

Affiliation:

1. Department of Civil Engineering, University of La Frontera, Temuco 4811230, Chile

2. Faculty of Engineering-CIS, Universidad Andres Bello, Santiago 8370134, Chile

3. Master on Engineering Sciences Program, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco 4811230, Chile

Abstract

The determination of susceptibility to rainfall-induced landslides is crucial in developing a robust Landslide Early Warning System (LEWS). With the potential uncertainty of susceptibility changes in mountain environments due to different precipitation thresholds related to climate change, it becomes important to evaluate these changes. In this study, we employed a machine learning approach (logistic models) to assess susceptibility changes to landslides in the Central Andes. We integrated geomorphological features such as slope and slope curvature, and precipitation data on different days before the landslide. We then split the data into a calibration and validation database in a 50/50% ratio, respectively. The results showed an area under the curve (AUC) performance of over 0.790, indicating the model’s capacity to represent prone-landslide changes based on geomorphological and precipitation antecedents. We further evaluated susceptibility changes using different precipitation scenarios by integrating Intensity/Duration/Frequency (IDF) products based on CHIRPS data. We concluded that this methodology could be implemented as a Rainfall-Induced Landslides Early Warning System (RILEWS) to forecast RIL occurrence zones and constrain precipitation thresholds. Our study estimates that half of the basin area in the study zone showed a 59% landslide probability for a return of two years at four hours. Given the extent and high population in the area, authorities must increase monitoring over unstable slopes or generate landslide early warning at an operational scale to improve risk management. We encourage decision-makers to focus on better understanding and analysing short-duration extreme events, and future urbanization and public infrastructure designs must consider RIL impact.

Funder

Universidad Nacional Andrés Bello, Chile

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference74 articles.

1. Inventario de procesos de remoción en masa en la cuenca baja del Río Blanco (31ºS), Andes Centrales Argentinos;Jeanneret;Rev. Mex. De Cienc. Geológicas,2018

2. Deslizamientos asociados a la degradación del permafrost: Evidencias geomorfológicas en el pasado y presente en los Andes Centrales (31–34° S);Moreiras;Geo UERJ,2019

3. An active large rock slide in the Andean paraglacial environment: The Yerba Loca landslide, central Chile;Alfaro;Landslides,2020

4. Hermanns, R.L., Folguera, A., Penna, I., Fauqué, L., and Niedermann, S. (2023, May 11). Landslide Dams in the Central Andes of Argentina (Northern Patagonia and the Argentine Northwest). Available online: https://www.researchgate.net/publication/225556828_Landslide_Dams_in_the_Central_Andes_of_Argentina_Northern_Patagonia_and_the_Argentine_Northwest.

5. Spatial and temporal analysis of a global landslide catalog;Kirschbaum;Geomorphology,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3