TNF-Block Genotypes Influence Susceptibility to HIV-Associated Sensory Neuropathy in Indonesians and South Africans

Author:

Gaff Jessica,Octaviana Fitri,Pillay Prinisha,Ngassa Mbenda Huguette Gaelle,Ariyanto Ibnu A.ORCID,Gan June Anne,Cherry Catherine L.,Kamerman PeterORCID,Laws Simon M.ORCID,Price Patricia

Abstract

HIV-associated sensory neuropathy (HIV-SN) is a disabling complication of HIV disease and antiretroviral therapies (ART). Since stavudine was removed from recommended treatment schedules, the prevalence of HIV-SN has declined and associated risk factors have changed. With stavudine, rs1799964*C (TNF-1031) associated with HIV-SN in Caucasians and Indonesians but not in South Africans. Here, we investigate associations between HIV-SN and rs1799964*C and 12 other polymorphisms spanning TNF and seven neighboring genes (the TNF-block) in Indonesians (n = 202; 34/168 cases) and South Africans (n = 75; 29/75 cases) treated without stavudine. Haplotypes were derived using fastPHASE and haplotype networks built with PopART. There were no associations with rs1799964*C in either population. However, rs9281523*C in intron 10 of BAT1 (alternatively DDX39B) independently associated with HIV-SN in Indonesians after correcting for lower CD4 T-cell counts and >500 copies of HIV RNA/mL (model p = 0.0011, Pseudo R2 = 0.09). rs4947324*T (between NFKBIL1 and LTA) independently associated with reduced risk of HIV-SN and shared haplotype 1 (containing no minor alleles) associated with increased risk of HIV-SN after correcting for greater body weight, a history of tuberculosis and nadir CD4 T-cell counts (model: p = 0.0003, Pseudo R2 = 0.22). These results confirm TNF-block genotypes influence susceptibility of HIV-SN. However, critical genotypes differ between ethnicities and with stavudine use.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3