Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated

Author:

Kamar Sizar,Howlett Marcus H. C.ORCID,Klooster Jan,de Graaff Wim,Csikós Tamás,Rabelink Martijn J. W. E.ORCID,Hoeben Rob C.ORCID,Kamermans Maarten

Abstract

Biblical references aside, restoring vision to the blind has proven to be a major technical challenge. In recent years, considerable advances have been made towards this end, especially when retinal degeneration underlies the vision loss such as occurs with retinitis pigmentosa. Under these conditions, optogenetic therapies are a particularly promising line of inquiry where remaining retinal cells are made into “artificial photoreceptors”. However, this strategy is not without its challenges and a model system using human retinal explants would aid its continued development and refinement. Here, we cultured post-mortem human retinas and show that explants remain viable for around 7 days. Within this period, the cones lose their outer segments and thus their light sensitivity but remain electrophysiologically intact, displaying all the major ionic conductances one would expect for a vertebrate cone. We optogenetically restored light responses to these quiescent cones using a lentivirus vector constructed to express enhanced halorhodopsin under the control of the human arrestin promotor. In these ‘reactivated’ retinas, we show a light-induced horizontal cell to cone feedback signal in cones, indicating that transduced cones were able to transmit their light response across the synapse to horizontal cells, which generated a large enough response to send a signal back to the cones. Furthermore, we show ganglion cell light responses, suggesting the cultured explant’s condition is still good enough to support transmission of the transduced cone signal over the intermediate retinal layers to the final retinal output level. Together, these results show that cultured human retinas are an appropriate model system to test optogenetic vision restoration approaches and that cones which have lost their outer segment, a condition occurring during the early stages of retinitis pigmentosa, are appropriate targets for optogenetic vision restoration therapies.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3