Design and Optimization Technologies of Permanent Magnet Machines and Drive Systems Based on Digital Twin Model

Author:

Liu LinORCID,Guo YouguangORCID,Yin Wenliang,Lei GangORCID,Zhu JianguoORCID

Abstract

One of the keys to the success of the fourth industrial revolution (Industry 4.0) is to empower machinery with cyber–physical systems connectivity. The digital twin (DT) offers a promising solution to tackle the challenges for realizing digital and smart manufacturing which has been successfully projected in many scenes. Electrical machines and drive systems, as the core power providers in many appliances and industrial equipment, are supposed to be reinforced on the verge of Industry 4.0 in the fields of design optimization, fault prognostic and coordinated control. Therefore, this paper aims to investigate the DT modelling method and the applications in electrical drive systems. Firstly, taking the high-speed permanent-magnet machine drive system as an example, multi-disciplinary design fundamentals and technologies, aiming at building initial mechanism and simulation models, are reviewed. The state-of-the-art of DT technologies is figured out to serve for high-precision and multi-scale dynamic modelling, by which a framework for DT models of electrical drive systems is presented. More importantly, fault diagnosis and optimization strategies of electrical drive systems in the decision and application layer are also discussed for the DT models, followed by the conclusions presenting open questions and possible directions.

Funder

Australian Research Council

China Scholarship Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference96 articles.

1. Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative Industrie 4.0;Tang,2013

2. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective

3. Critical Success Factors of Industry 4.0 in Automotive Manufacturing Industry

4. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison

5. Quality inference from living digital twins in IoT-enabled manufacturing systems;Chhetri;Proceedings of the International Conference on Internet of Things Design and Implementation,2019

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3