Fault Detection Method via k-Nearest Neighbor Normalization and Weight Local Outlier Factor for Circulating Fluidized Bed Boiler with Multimode Process

Author:

Kim MinseokORCID,Jung Seunghwan,Kim Baekcheon,Kim Jinyong,Kim EunkyeongORCID,Kim JonggeunORCID,Kim SungshinORCID

Abstract

In modern complex industrial processes, mode changes cause unplanned shutdowns, potentially shortening the lifespan of key equipment and incurring significant maintenance costs. To avoid this problem, a method that can detect the fault of equipment operating in various modes is required. Therefore, we propose a novel fault detection method that uses the k-nearest neighbor normalization-based weight local outlier factor (WLOF). The proposed method performs local normalization using neighbors to consider possible mode changes in the normal data and WLOF is used for fault detection. In contrast to statistical methods, such as principal component analysis (PCA) and independent component analysis (ICA), the local outlier factor (LOF) uses the density of neighbors. However, because LOF is significantly affected by the distance between its neighbors, the weight is multiplied proportionally to the distance between each neighbor to improve the fault detection performance of the LOF. The efficiency of the proposed method was evaluated using a multimode numerical case and a circulating fluidized bed boiler. The experimental results show that the proposed method outperforms conventional PCA, kernel PCA (KPCA), k-nearest neighbor (kNN), and LOF. In particular, the proposed method improved the detection accuracy by 20% compared with conventional methods. Therefore, the proposed method can be applied to a real process operating in multiple modes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3