The Environmental and Genetic Controls of Increment Suggest a Limited Adaptability of Native Populations of Norway Spruce to Weather Extremes

Author:

Matisons Roberts1ORCID,Katrevičs Juris1,Zeltiņš Pauls1ORCID,Jansone Diāna1,Jansons Āris1ORCID

Affiliation:

1. Latvian State Forest Research Institute ‘Silava’, 111 Rigas Str., LV-2169 Salaspils, Latvia

Abstract

In the Baltics, warming is expected to burden the growth of Norway spruce Picea abies, with weather anomalies/extremes having strong triggering effects, which can be mitigated by tree breeding. Within the region, breeding programmes have been aiming for productivity, yet being conservative, their sustainability depends on the adaptability of native genotypes, which is unclear. The adaptability of genotypes can be assessed through local adaptations and phenotypic plasticity, with the sensitivity of increment depicting the conformity of genotypes and environments. To assess the adaptability of native populations to anticipated climates, local genetic adaptation and phenotypic plasticity of the weather sensitivity of the radial increment were assessed by the methods of time series analysis and quantitative genetics based on three clonal trials (low-density single-tree plot plantations of grafted clones of native plus trees) representing the local climatic gradient in Latvia. The growth of trees was sensitive to the moisture availability in summer and the thermal regime in winter, yet coinciding anomalies in both were associated with abrupt changes in tree ring width. These environmental effects differed among the clones, indicating genetic controls over the sensitivity of increment, which, however, decreased under a warmer climate, suggesting a limited adaptability of local populations to warming. Still, the weather-growth relationships showed moderate phenotypic plasticity, suggesting some mid-term adaptability. Accordingly, supplementation of breeding populations via assisted gene transfer with the genotypes that are adapted to warmer and drier climates appears crucial.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3