Affiliation:
1. Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
2. Faculty of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
3. Department of Energy, Aalborg University, 9220 Aalborg, Denmark
Abstract
Integrating renewable energy sources (RESs), such as offshore wind turbines (OWTs), into the power grid demands advanced control strategies to enhance efficiency and stability. Consequently, a Deep Fractional-order Wind turbine eXpert control system (DeepFWX) model is developed, representing a hybrid proportional/integral (PI) fractional-order (FO) model predictive random forest alternating current (AC) bus voltage controller designed explicitly for OWTs. DeepFWX aims to address the challenges associated with offshore wind energy systems, focusing on achieving the smooth tracking and state estimation of the AC bus voltage. Extensive comparative analyses were performed against other state-of-the-art intelligent models to assess the effectiveness of DeepFWX. Key performance indicators (KPIs) such as MAE, MAPE, RMSE, RMSPE, and R2 were considered. Superior performance across all the evaluated metrics was demonstrated by DeepFWX, as it achieved MAE of [15.03, 0.58], MAPE of [0.09, 0.14], RMSE of [70.39, 5.64], RMSPE of [0.34, 0.85], as well as the R2 of [0.99, 0.99] for the systems states [X1, X2]. The proposed hybrid approach anticipates the capabilities of FO modeling, predictive control, and random forest intelligent algorithms to achieve the precise control of AC bus voltage, thereby enhancing the overall stability and performance of OWTs in the evolving sector of renewable energy integration.