Fractional Derivative Model on Physical Fractal Space: Improving Rock Permeability Analysis

Author:

Liu Zelin1,Yu Xiaobin1,Xie Selin2,Zhou Hongwei23ORCID,Yin Yajun1

Affiliation:

1. Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

2. School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, China

3. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining & Technology, Xueyuan Road D11, Beijing 100083, China

Abstract

As challenges in gas extraction from coal mines increase, precise measurement of permeability becomes crucial. This study proposes a novel pulse transient method based on a fractional derivative model derived on physical fractal space, incorporating operator algebra and the mechanics–electricity analogy to derive a new control equation that more accurately delineates the permeability evolution in coal. To validate the approach, permeability experiments were conducted on coal samples under mining stress conditions. The results showed that the adoption of a physically meaningful fractional-order relaxation equation provides a more accurate description of non-Darcy flow behaviour in rocks than traditional integer-order control equations. Additionally, the method proved effective across different rock types, verifying its broad applicability. By establishing a new theoretical foundation, this approach illustrates how the microscale fractal structure of rocks is fundamentally linked to their macroscale fractional responses, thereby enhancing the understanding of fractional modelling methods in rock mechanics and related domains.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3