Fractal Analysis of Particle Distribution and Scale Effect in a Soil–Rock Mixture

Author:

Fu Xiaodong,Ding Haifeng,Sheng Qian,Zhang Zhenping,Yin Dawei,Chen Fei

Abstract

A soil–rock mixture (SRM) is a type of heterogeneous geomaterial, and the particle distribution of SRM can be described by fractal theory. At present, it is difficult to quantify the fractal dimension of a particle size distribution and understand the scale effect in SRMs. In this study, the fractal theory and discrete element method (DEM) were introduced to solve this problem. First, the particle gradation of SRM was dealt with by using fractal theory. The fractal structure of particle distribution was studied, and a method of calculation of the fractal dimension is presented in this paper. Second, based on the fractal dimension and relative threshold, the particle gradations of SRMs at different scales were predicted. Third, numerical direct shear tests of SRM at different scales were simulated by using the DEM. The scale effects of shear displacement, shear zone, and shear strength parameters were revealed. Last, taking the maximum particle size of 60 mm as the standard value, the piece-wise functional relationship between shear strength parameters and particle size was established. The results are as follows: for SRM in a representative engineering area, by plotting the relationship between particle cumulative mass percentage and particle size, we can judge whether the SRM has a fractal structure; in Southwest China, the frequency of the fractal dimension of the SRM is in the normal distribution, and the median fractal dimension is 2.62; the particle gradations of SRMs at different scales calculated by fractal dimension and relative threshold can expand the study scope of particle size analysis; when the particle size is less than 70 mm, the strength parameters show a parabolic trend with the particle size increases, and if not, a nearly linear trend is found. The proposed method can describe the fractal characteristics of SRM in a representative engineering area and provides a quantitative estimation of shear strength parameters of SRM at different scales.

Funder

Youth Innovation Promotion Association CAS

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference54 articles.

1. Stochastic Structural Model of the Earth-Rock Aggregate and Its Application;You,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3