A New Intelligent Fractional-Order Load Frequency Control for Interconnected Modern Power Systems with Virtual Inertia Control

Author:

Zaid Sherif A.ORCID,Bakeer AbualkasimORCID,Magdy GaberORCID,Albalawi Hani,Kassem Ahmed M.,El-Shimy Mohmed E.,AbdelMeguid Hossam,Manqarah Bassel

Abstract

Since modern power systems are susceptible to undesirable frequency oscillations caused by uncertainties in renewable energy sources (RESs) and loads, load frequency control (LFC) has a crucial role to get these systems’ frequency stability back. However, existing LFC techniques may not be sufficient to confront the key challenge arising from the low-inertia issue, which is due to the integration of high-penetration RESs. Therefore, to address this issue, this study proposes an optimized intelligent fractional-order integral (iFOI) controller for the LFC of a two-area interconnected modern power system with the implementation of virtual inertia control (VIC). Here, the proposed iFOI controller is optimally designed using an efficient metaheuristic optimization technique, called the gray wolf optimization (GWO) algorithm, which provides minimum values for system frequency deviations and tie-line power deviation. Moreover, the effectiveness of the proposed optimal iFOI controller is confirmed by contrasting its performance with other control techniques utilized in the literature, such as the integral controller and FOI controller, which are also designed in this study, under load/RES fluctuations. Compared to these control techniques from the literature for several scenarios, the simulation results produced by the MATLAB software have demonstrated the efficacy and resilience of the proposed optimal iFOI controller based on the GWO. Additionally, the effectiveness of the proposed controller design in regulating the frequency of interconnected modern power systems with the application of VIC is confirmed.

Funder

University of Tabuk

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3