Abstract
In this paper, the study of the fully developed flow of a self-similar (fractal) power-law fluid is presented. The rheological way of behaving of the fluid is modeled utilizing the Ostwald–de Waele relationship (covering shear-thinning, Newtonian and shear-thickening fluids). A self-similar (fractal) fluid is depicted as a continuum in a noninteger dimensional space. Involving vector calculus for the instance of a noninteger dimensional space, we determine an analytical solution of the Cauchy equation for the instance of a non-Newtonian self-similar fluid flow in a cylindrical pipe. The plot of the velocity profile obtained shows that the rheological behavior of a non-Newtonian power-law fluid is essentially impacted by its self-similar structure. A self-similar shear thinning fluid and a self-similar Newtonian fluid take on a shear-thickening way of behaving, and a self-similar shear-thickening fluid becomes more shear thickening. This approach has many useful applications in industry, for the investigation of blood flow and fractal fluid hydrology.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献